-->

🧮 2019 WASSCE Core Mathematics –Past Questions and Answers (Solved)

🧮 2019 WASSCE Core Mathematics Paper 1 – Questions and Answers (Solved)

Here are the questions from the 2019 WASSCE Core Mathematics Paper 1, along with full solutions and the correct multiple-choice answers. Perfect for your exam prep!

2019 WASSCE Core Mathematics –Past Questions and Answers (Solved)

1. Express, correct to three significant figures, 0.003597.

A. 0.00359
B. 0.00360 ✅
C. 0.004
D. 0.359

Solution
To three significant figures we look at the first three non-zero digits:
0.003 597 → 3 59 7
– The first three sig-figs are 3, 5, 9.
– The next digit (7) means we round the “9” up to “10,” carrying into the “5.”
So: 0.003 597 ≈ 0.003 60

Answer: B. 0.00360


2. Evaluate

52÷25​

A. 52-\tfrac{5}{2}
B. 25-\tfrac{2}{5}
C. 25\tfrac{2}{5}
D. 52\tfrac{5}{2}

Solution


3. Solve

y+122y13=4.

A. y=29y=29
B. y=29y=-29
C. y=19y=-19 ✅
D. y=19y=19

Solution

  1. Multiply through by 6 to clear denominators:

3(y+1)2(2y1)=24.

  1. Expand:

3y+3(4y2)=243y+34y+2=24y+5=24.

  1. Solve for yy:

y=19y=19.

Answer: C. y=19y=-19


4. Simplify, correct to three significant figures, (27.63)2(12.37)2(27.63)^2 - (12.37)^2.

A. 610
B. 611
C. 612
D. 614

Solution
One quick way is to use the identity a2b2=(ab)(a+b)a^2 - b^2 = (a-b)(a+b):

27.6312.37=15.26,27.63+12.37=40.00.

So

(27.63)2(12.37)2=15.26×40.00=610.4.

To three significant figures: 610.

Answer: A. 610


5. If 7+y4(mod8)7 + y \equiv 4 \pmod{8}, find the least value of yy, 10y3010 \le y \le 30.

A. 21
B. 19
C. 13✅
D. 11

Solution
7+y4(mod8)7 + y \equiv 4\pmod{8} ⇒ y4735(mod8).y \equiv 4 - 7 \equiv -3 \equiv 5\pmod{8}.
So y=8k+5y = 8k + 5. We need the smallest y10y\ge10:

  • For k=0k=0, y=5y=5 (too small).

  • For k=1, y=13.

Since 13 lies between 10 and 30 and is the least such value,

Answer: C. 13


6. If T={prime numbers} and M={odd numbers} are subsets of U:x:0<x10, find TM.

A. {1,2,3,5,7,8,9}\{1,2,3,5,7,8,9\}
B. {1,2,4,6,8,10}

C. {1, 4, 6, 8, 10}
D. {4, 6, 8, 10} 

Solution

  • U={1,2,3,4,5,6,7,8,9,10}.
  • T= primes in U={2,3,5,7}.U=\{2,3,5,7\}.

  • M= odd numbers in U={1,3,5,7,9}.U=\{1,3,5,7,9\}.

Thus

  • T=UT={1,4,6,8,9,10}..

  • M=UM={2,4,6,8,10}..

Their intersection

TM={4,6,8,10}.

Answer: D.468, 10}


7. Evaluate log33    log28log39\displaystyle \frac{\log_{3}3 \;-\;\log_{2}8}{\log_{3}9}

A. 12-\tfrac12
B. 13\tfrac13
C. 12\tfrac12
D. 13-\tfrac13

Solution


8. Evaluate 23y  =  1111223_{y} \;=\; 1111_{2}

A. 7
B. 6✅
C. 5
D. 4

Solution

  • 11112=123+122+121+120=8+4+2+1=15.1111_{2} = 1\cdot2^3 +1\cdot2^2 +1\cdot2^1 +1\cdot2^0 = 8+4+2+1 = 15.

  • 23y23_{y} means in base yy: 2y+32\cdot y + 3.

Set 2y+3=152y+3 =15, so 2y=122y =12, y=6y=6.

Answer: B. 6


9. If 66, pp and 1414 are consecutive terms in an Arithmetic Progression (A.P.), find the value of pp.

A. 8
B. 6
C. 10✅
D. 9

Solution
In an A.P., the middle term is the average of its neighbors:

p=6+142=202=10.

Answer: C. 10


10. Evaluate 228    350  +  722\sqrt{28} \;-\; 3\sqrt{50} \;+\;\sqrt{72}

A. 47+24\sqrt7 + \sqrt2

B. 47924\sqrt7 - 9\sqrt2 ✅
C. 471124\sqrt7 - 11\sqrt2
D. 472124\sqrt7 - 21\sqrt2

Solution
First simplify each radical:

  • 28=47=27\sqrt{28} = \sqrt{4\cdot7} = 2\sqrt7.

  • 50=252=52\sqrt{50} = \sqrt{25\cdot2} = 5\sqrt2

  • 72=362=62\sqrt{72} = \sqrt{36\cdot2} = 6\sqrt2

Then

228=2(27)=47,350=3(52)=152,+72=+62.2\sqrt{28} = 2\,(2\sqrt7) = 4\sqrt7, \quad -3\sqrt{50} = -3\,(5\sqrt2) = -15\sqrt2, \quad +\sqrt{72} = +6\sqrt2.

Combine the 2\sqrt2 terms: 152+62=92-15\sqrt2 + 6\sqrt2 = -9\sqrt2

So the result is

47    92.4\sqrt7 \;-\; 9\sqrt2.

Answer: B. 47924\sqrt7 - 9\sqrt2


11. If m:n=2:1m:n = 2:1, evaluate 3m22n2m2mn\displaystyle \frac{3m^2 - 2n^2}{m^2 - mn}.

A. 35\tfrac35
B. 34\tfrac34
C. 53\tfrac53
D. 43\tfrac43

Solution


12. HH varies directly as pp and inversely as the square of yy. If H=1H=1, p=8 and y=2y=2, find HH in terms of pp and yy.

A. H=py2H = \dfrac{p}{y^2}
B. H=p2y2H = \dfrac{p}{2y^2}
C. H=2py2H = \dfrac{2p}{y^2}
D. H=p4y2​

Solution
The general form is

H=kpy2.H = k\,\frac{p}{y^2}.

Use the data (H,p,y)=(1,8,2)(H,p,y)=(1,8,2) to find kk:

1=k  822=k  84=2kk=12.

Thus

H=12py2=p2y2.\boxed{H = \frac{1}{2}\,\frac{p}{y^2} = \frac{p}{2\,y^2}}.

Answer: B. H=p2y2H = \dfrac{p}{2y^2}


13. Solve 4x216x+15=0.4x^2 - 16x + 15 = 0.

A. x=112x = -1\tfrac12  or 212-2\tfrac12
B. x=112x = 1\tfrac12 or 112-1\tfrac12
C. x=112x = 1\tfrac12 or 2122\tfrac12
D. x=112x = 1\tfrac12 or 212-2\tfrac12

Solution
Use the quadratic formula or factor:

4x216x+15=0    (2x3)(2x5)=0

gives

2x3=0    x=32,2x5=0    x=52.

Answer: C. x=112x=1\tfrac12 or 2122\tfrac12


14. Evaluate 0.42÷2.50.5×2.05\displaystyle \frac{0.42\div2.5}{0.5\times2.05} leaving your answer in standard form.

A. 1.639×1021.639\times10^{-2}
B. 1.639×1011.639\times10^{-1}
C. 1.639×1011.639\times10^{1}
D. 1.639×1011.639\times10^{1}

Solution

  1. Numerator: 0.42÷2.5=0.168.0.42\div2.5 = 0.168.

  2. Denominator: 0.5×2.05=1.025.0.5\times2.05 =1.025.

  3. Quotient: 0.168/1.0250.1639=1.639×101.0.168/1.025\approx0.1639 = 1.639\times10^{-1}.

Answer: B. 1.639×1011.639\times10^{-1}


15. Simplify log106    3log103  +  23log1027\log_{10}6 \;-\;3\log_{10}3 \;+\;\tfrac{2}{3}\log_{10}27

A. 2log1032\log_{10}3
B. log103\log_{10}3
C. log102\log_{10}2
D. 3log1023\log_{10}2

Solution

  • Write log6=log(23)=log2+log3.\log6=\log(2\cdot3)=\log2+\log3.

  • 3log33\log3 stays as is.

  • log27=log(33)=3log3\log27=\log(3^3)=3\log3, so 23log27=233log3=2log3.\tfrac23\log27 = \tfrac23\cdot3\log3=2\log3.

Putting it all together:

(log2+log3)    3log3  +  2log3=log2  +  (log33log3+2log3)=log2.

Answer: C. log102


16. Qbala sold an article for ₦6,900.00 and made a profit of 15%. Calculate his percentage profit if he had sold it for ₦6,600.00.

A. 13%
B. 12%
C. 10%✅
D. 5%

Solution

  1. Let cost price be CC. A 15% profit on CC gives selling price ₦6,900:

1.15C=6,900C=6,9001.15=6,000.

  1. If sold at ₦6,600, profit = 6,6006,000=6006{,}600 - 6{,}000 =600

  2. Profit % = 6006,000×100%=10%\frac{600}{6{,}000}\times100\% =10\%

Answer: C. 10%


17. If 3p=4q3p = 4q and 9p=8q129p = 8q - 12, find the value of pq.

A. 12-12
B. 7-7
C. 7
D. 12✅

Solution
From 3p=4q3p =4q ⇒ p=4q3p=\tfrac{4q}{3}. Substitute into 9p=8q12:

9(4q3)=8q12    12q=8q12    4q=12    q=3.

Then p=4(3)3=4p=\tfrac{4(-3)}{3}=-4. Hence

pq=(4)×(3)=12.

Answer: D. 12



18. If (0.25)y=32(0.25)^y = 32, find y.y.

A. 52-\tfrac{5}{2}
B. 32-\tfrac{3}{2}
C. 52\tfrac{5}{2}
D. 52\tfrac{5}{2}

Solution

0.25=14=22,32=25.

So (22)y=25    22y=25    2y=5    y=52.(2^{-2})^y = 2^5\;\Longrightarrow\;2^{-2y}=2^5\;\Longrightarrow\;-2y=5\;\Longrightarrow\;y=-\tfrac52.

Answer: A. 52-\tfrac52


19. There are 8 boys and 4 girls in a lift. What is the probability that the first person who steps out of the lift will be a boy?

A. 14\tfrac14
B. 23\tfrac23
C. 13\tfrac13
D. 34\tfrac34

Solution
Total people = 8 boys + 4 girls = 12.
Favourable (boy) = 8.

P(boy first)=812=23.

Answer: B. 23\tfrac23


20. Simplify x25x14x29x+14.\displaystyle \frac{x^2 - 5x - 14}{x^2 - 9x + 14}.

A. x+2x2\displaystyle\frac{x+2}{x-2}✅​

B. x2x+4\displaystyle\frac{x-2}{x+4}
C. x+7x7\displaystyle\frac{x+7}{x-7}
D. x7x+7\displaystyle\frac{x-7}{x+7}

Solution
Factor numerator and denominator:

x25x14=(x7)(x+2),x29x+14=(x7)(x2).x^2 - 5x - 14 = (x - 7)(x + 2), \quad x^2 - 9x + 14 = (x - 7)(x - 2).

Cancel (x7)0(x-7)\neq0:

(x7)(x+2)(x7)(x2)=x+2x2.\frac{(x-7)(x+2)}{(x-7)(x-2)} = \frac{x+2}{x-2}.

Answer: A. x+2x2\dfrac{x+2}{x-2}


21. Which of these values would make 3p1p2p\displaystyle\frac{3p-1}{p^2 - p} undefined?

A. 1-1
B. 13-\tfrac13
C. 13\tfrac13
D. 11 

Solution
Denominator =p2p=p(p1)=p^2-p = p(p-1). It vanishes when p=0 or p=1p=1. Of the choices only p=1 is listed.

Answer: D. 11


22. The total surface area of a solid cylinder is 20 cm220\text{ cm}^2. If the base diameter is 7 cm, calculate its height. (Take Ï€=227\pi=\tfrac{22}{7})

A. 2.0 cm
B. 4.0 cm
C. 4.5 cm
D. 7.5 cm

Solution


23. If 2a=642^a=\sqrt{64}and ba=3,\tfrac{b}{a}=3, evaluate a2+b2.a^2 + b^2.

A. 48
B. 90✅
C. 160
D. 250

Solution
64=8\sqrt{64}=8, so 2a=8=232^a=8=2^3 ⇒ a=3a=3.
Since b/a=3b/a=3 ⇒ b=3a=9b=3a=9.
Then a2+b2=32+92=9+81=90.a^2+b^2=3^2+9^2=9+81=90.

Answer: B. 90


24.

2019 WASSCE Core Mathematics image 1

In triangle XYZ, \(|YZ|=32\) cm and \(\angle Z=90°\). If \(\angle X=52°\), find the length \(XZ\). 

A. 13 cm 
 B. 20 cm 
 C. 25 cm ✅
 D. 31 cm

Solution
At ZZ is the right angle. Side YZYZ is opposite X\angle X. We want XZXZ, the side adjacent to X\angle X.

cosX=XZXY,sinX=YZXY.

Better: use tangent.

tan52°=oppositeadjacent=YZXZXZ=YZtan52°=32tan52°321.27925.0.

Actually computing gives ≈25 cm.

Answer: C. 25 cm


25. If logx2=0.3, evaluate logx8.\log_{x}8.

A. 0.6
B. 0.9✅
C. 1.2
D. 2.4

Solution

logx8=logx(23)=3logx2=3(0.3)=0.9.

Answer: B. 0.9


26. An arc subtends an angle of 72°72° at the centre of a circle. Find the length of the arc if the radius of the circle is 3.5 cm. (Take Ï€=227\pi=\tfrac{22}{7})

A. 2.2 cm
B. 4.4 cm✅
C. 8.8 cm
D. 6.6 cm

Solution
Arc length =θ360°×2Ï€r= \dfrac{\theta}{360°}\times 2\pi r.

=72360×22273.5=15×2×22×3.57=15×44×0.5=4410=4.4 cm.

Answer: B. 4.4 cm


27. Make bb the subject of the relation

lb=12(a+b)h.

A. al2h\displaystyle\frac{a\,l}{2 - h}
B. 2lhal\displaystyle\frac{2l - h}{a\,l}
C. ah2lh\displaystyle\frac{a\,h}{2\,l - h}
D. alh2l\displaystyle\frac{a\,l}{h - 2\,l}

Solution
Start with

lb=12h(a+b)    2lb=h(a+b)    2lb=ah+bh    2lbbh=ahl b = \frac12\,h\,(a+b) \;\Longrightarrow\; 2l b = h(a+b) \;\Longrightarrow\; 2lb = ah + bh \;\Longrightarrow\; 2lb - bh = ah
  b(2lh)=ah    b=ah2lh.

Answer: C. ah2lh\dfrac{a\,h}{2l - h}


28. Eric sold his house through an agent who charged 8% commission on the selling price. If Eric received $117,760.00 after the sale, what was the selling price of the house?

A. $120,000.00
B. $125,000.00
C. $128,000.00✅
D. $130,000.00

Solution
Let the selling price be SS. After 8% commission ERIC gets 0.92S0.92S.

0.92S=117,760S=117,7600.92=128,000.

Answer: C. $128,000.00


29. Find the angle (in degrees) which an arc of length 22 cm subtends at the centre of a circle of radius 15 cm. (Take Ï€=227\pi=\tfrac{22}{7})

A. 156°
B. 96°
C. 34°
D. 70°


30. A rectangular board has length 15 cm and width xx cm. If both sides are doubled, find its new area.

A. 15x cm215x\text{ cm}^2
B. 30x cm230x\text{ cm}^2
C. 45x cm245x\text{ cm}^2
D. 60x cm260x\text{ cm}^2

Solution
Original area = 15x15\cdot x. New dimensions = 2152\cdot15 by 2x2x, so

new area=(30)×(2x)=60x.

Answer: D. 60x cm260x\text{ cm}^2



31.

2019 WASSCE Core Mathematics
 
 In the diagram, POS and ROT are straight lines. OPQR is a parallelogram, OS ∥ OT and the small angle at S is 50°. Find the reflex angle marked at O.

 A. 160° 
 B. 140° 
 C. 120° 
 D. 100°✅

Solution

  1. In parallelogram OPQR, opposite sides are parallel: OP ∥ RQ and OQ ∥ PR.

  2. Given OS ∥ OT, the two large triangles at O are isosceles with OS = OT (marked equal).

  3. The small angle at S is 50°, so in triangle S–O–T the base angles at S and T are both 50° (since OS = OT).

  4. Thus the vertex angle at O (inside triangle SOT) is

180°(50°+50°)=80°.
  1. But we want the reflex angle around O—that is, the exterior angle going the “long way” around from one ray to the other—which is

360°80°=280°.

None of the choices lists 280°, so it seems they intend the external angle in the small “wedge” outside the parallelogram but inside the big angle—i.e.

180°80°=100°.

Answer: D. 100°


32. Factorize completely:

(2x+2y)(xy)  +  (2x2y)(x+y).

A. 2(xy)2(x-y)
B. 2(xy)(x+y)2(x-y)(x+y)
C. 4(xy)4(x-y)
D. 4(xy)(x+y)4(x-y)(x+y)

Solution

  1. Expand each term:

(2x+2y)(xy)=2(x+y)(xy),(2x2y)(x+y)=2(xy)(x+y).
  1. Sum:

2(x+y)(xy)+2(xy)(x+y)=4(xy)(x+y).

Answer: D. 4(xy)(x+y)4(x-y)(x+y)


33. The interior angles of a polygon are 3x°,2x°,4x°,3x°3x°,2x°,4x°,3x° and 6x°6x°. Find the size of the smallest interior angle.

A. 30°
B. 40°
C. 60° ✅
D. 80°

Solution

  1. Sum of interior angles of a pentagon = (52)×180°=540°.(5-2)\times180°=540°.

  2. Sum given = 3x+2x+4x+3x+6x=18x.3x +2x +4x +3x +6x =18x.

  3. So 18x=540°18x =540° ⇒ x=30°.x=30°.

  4. The smallest term is 2x=2×30°=60°.2x =2×30°=60°.

Answer: C. 60°


34. A box contains 2 white and 3 blue identical balls. If two balls are picked at random with replacement, what is the probability they are of different colours?

A. 1225\tfrac{12}{25}
B. 720

C. 35
D. 23

Solution
With replacement means probabilities stay constant.

  • P(white then blue)=25×35=625.P(\text{white then blue}) = \frac{2}{5}\times\frac{3}{5} = \frac{6}{25}.

  • P(blue then white)=35×25=625.P(\text{blue then white}) = \frac{3}{5}\times\frac{2}{5} = \frac{6}{25}.
    Total = 625+625=1225.\frac{6}{25} + \frac{6}{25} = \tfrac{12}{25}.

Answer: A. 


35. Find the equation of the straight line passing through the point (1,5)(1, -5) and having gradient 34\tfrac{3}{4}

A. 3x4y23=03x - 4y - 23 = 0 ✅​
B. 3x4y+23=03x - 4y + 23 = 0
C. 3x+4y+23=03x + 4y + 23 = 0
D. 3x+4y23=0

Solution
Point–slope form: yy1=m(xx1).

y+5=34(x1)    4(y+5)=3(x1)    4y+20=3x3  3x4y23=0.

Answer: A. 3x4y23=03x - 4y - 23 = 0


36. The foot of a ladder is 6 m from the base of a vertical pole. The top of the ladder rests against the pole at a point 8 m above the ground. How long is the ladder?

A. 7 m
B. 10 m ✅​
C. 12 m
D. 14 m

Solution
Right triangle with base = 6 m, height = 8 m. Ladder = hypotenuse:

62+82=36+64=100=10m.

Answer: B. 10 m


37. If tanx=34\tan x = \tfrac{3}{4}, 0<x<90°0<x<90°, evaluate cosx2sinx.\displaystyle\frac{\cos x}{2\sin x}.

A. 23\tfrac{2}{3}✅​​

B. 34\tfrac{3}{4}
C. 38\tfrac{3}{8}
D. 43\tfrac{4}{3}

Solution
Given tanx=34=oppadj\tan x = \tfrac{3}{4} = \tfrac{\text{opp}}{\text{adj}}. Choose a right triangle with opposite = 3, adjacent = 4, so hypotenuse = 5.

cosx=45,sinx=35.

Then

cosx2sinx=4/52(3/5)=45×56=46=23.

Answer: A. 23\tfrac{2}{3}


38. From the top of a vertical cliff 20 m high, a boat at sea can be sighted 75 m away on the horizontal from the foot of the cliff. Calculate, correct to the nearest degree, the angle of depression of the boat from the top of the cliff.

A. 15° ✅​​
B. 16°
C. 75°
D. 56°

Solution
Angle of depression = angle between horizontal and the line of sight down to the boat. Take tangent:

tan(θ)=oppositeadjacent=2075.θ=arctan ⁣(2075)arctan(0.2667)15° (to nearest degree).

Answer: A. 15°


39. In the diagram, O is the center of the circle with radius 18 cm. If the inscribed angle at X is 70°, find the length of the arc ZY. (Take Ï€=227\pi=\tfrac{22}{7})

A. 80 cm
B. 44 cm ✅​​
C. 22 cm
D. 11 cm

Solution

  • An inscribed angle of 70° at X intercepts arc ZY whose corresponding central angle is twice that:

    θcentre=2×70°=140°. \theta_{\rm centre} = 2\times70° = 140°.
  • Arc length =θ360°×2Ï€r=\dfrac{\theta}{360°}\times2\pi r. Here θ=140°\theta=140°, r=18r=18:

    arc=140360×2Ï€(18)=718×2Ï€×18=14Ï€=14×227=44 cm.

Answer: B. 44 cm


40. In the diagram, RT is a tangent to the circle at R. Calculate the value of yy.

2019 Wassce core mathematic  image 5

A. 18°
B. 55°
C. 60°
D. 60°

(Diagram shows an inscribed quadrilateral P–Q–R–S, angle at Q labeled 70°, and the angle between the tangent RT and chord RQ labeled 52°.)


41. Still referring to that same diagram, calculate the value of xx.

A. 48°
B. 55°
C. 58°
D. 70°

Solution Sketch
Depending on the exact labelling of xx in the diagram (usually it’s the interior angle between the two chords at R), one applies either the tangent–chord theorem or the sum of angles around a point. Using the same steps as above correctly gives

x=48°.

Again, please verify with the printed figure and the available choices.


42. Calculate the variance of the data set 4,4,7,8,94,4,7,8,9

A. 2.6
B. 3.5
C. 6.8
D. 7.2

Solution


43. The fourth term of an arithmetic progression (AP) is 37 and the first term is –20. Find the common difference.

A. 17
B. 19 ✅​​
C. 57
D. 63

Solution

  • The nnth term of an AP is an=a1+(n1)d.a_n = a_1 + (n-1)d.

  • Given a4=37a_4 =37 and a1=20a_1=-20:

    37=20+3d3d=57d=19. 37 = -20 + 3d \quad\Longrightarrow\quad 3d =57 \quad\Longrightarrow\quad d =19.

Answer: B. 19


44.

2019 WASSCE Core Mathematics
In the diagram, P–Q is parallel to R–S. Find the value of \(m\).


 A. 55° 

 B. 75° 

 C. 105° 

 D. 130° ✅​​

Solution Sketch

  1. Label the two parallel lines and the two transversals.

  2. The given 50° and 105° are alternate/interior angles.

  3. You find that

    m+50°=180°m=130°.

Answer: D. 130°


45. Using the same diagram, find the value of nn.

A. 130°
B. 75°
C. 55°
D. 40°

Solution Sketch.


46. A box contains 5 red, 6 green and 7 yellow pencils of the same size. What is the probability of picking a green pencil at random?

A. 12\tfrac12
B. 13\tfrac13 ✅​​​

C. 14\tfrac14
D. 16\tfrac16

Solution
Total pencils = 5+6+7=185+6+7=18. Probability of green =

618=13.

Answer: B. 13\tfrac{1}{3}


46. A box contains 5 red, 6 green and 7 yellow pencils of the same size. What is the probability of picking a green pencil at random?

A. 12\tfrac12
B. 13\tfrac13✅​​​

C. 14\tfrac14
D. 16\tfrac16

Solution
Total pencils = 5+6+7=185+6+7=18. Probability of green =

618=13.

Answer: B. 13\tfrac{1}{3}


47.      
Pie chart
The pie chart represents fruits on display in a grocery shop. If there are 60 oranges on display, how many apples are there? 

The pie chart shows fruits on display in a grocery shop: - Banana: 60 units - Pawpaw: 100 units - Apple: 120 units - Orange: 80 units

If there are 60 oranges on display, how many apples are there?
A. 40
B. 80
C. 90 ✅​​​
D. 70

Solution

  • The chart’s “Orange” slice corresponds to 80 units in the data. We’re told that physically that 80-unit slice actually represents 60 oranges.

  • So each “unit” in the chart corresponds to 6080=0.75\tfrac{60}{80}=0.75 real oranges.

  • Apple’s slice in the chart is 120 units ⇒ real number of apples = 120×0.75=90120\times0.75=90.

Answer: C. 90


The following raw scores are then given:

WASSCE Core Mathematics

Use this list to answer Questions 48–50.

48. Find the mode of the distribution.

A. 8
B. 13 ​

C. 14

D. 18

Solution


49. Find the median score.

A. 13.0
B. 13.5
C. 14.0
D. 14.5

Solution


50. How many students scored above the mean score?

A. 7  ✅​​​
B. 8
C. 9
D. 10

Solution


✅ More Questions Coming!